What039s la differenza tra media mobile e ponderata media mobile a 5 periodo di media mobile, sulla base dei prezzi di cui sopra, sarebbe calcolato con la seguente formula: Sulla base della suddetta equazione, il prezzo medio per il periodo di cui sopra era 90.66. Utilizzando medie mobili è un metodo efficace per l'eliminazione di forti fluttuazioni dei prezzi. La limitazione chiave è che i punti dati dai dati precedenti non sono ponderati in modo diverso rispetto ai dati punti vicino l'inizio del set di dati. Questo è dove le medie mobili ponderate entrano in gioco. medie ponderate assegnare una ponderazione più pesante a più punti di dati attuali dal momento che sono più rilevanti di punti dati in un lontano passato. La somma della ponderazione deve aggiungere fino a 1 (o 100). Nel caso della media mobile semplice, i coefficienti sono equamente distribuiti, ed è per questo che non sono riportati nella tabella sopra riportata. Prezzo di chiusura di AAPLWeighted medie mobili: I principi fondamentali Nel corso degli anni, i tecnici hanno trovato due problemi con la media mobile semplice. Il primo problema è il lasso di tempo della media mobile (MA). La maggior parte degli analisti tecnici ritengono che l'azione dei prezzi. l'apertura o la chiusura del prezzo delle azioni, non è sufficiente su cui dipendere per prevedere correttamente i segnali di acquisto o vendita delle azioni di crossover MAs. Per risolvere questo problema, gli analisti ora assegnare più peso ai dati relativi ai prezzi più recenti utilizzando la media mobile esponenziale livellata (EMA). (Per saperne di più nell'esplorazione esponenziale Pesato media mobile.) Un esempio per esempio, utilizzando un 10-giorni MA, un analista avrebbe preso il prezzo del 10 ° giorno di chiusura e moltiplicare questo numero per 10, il nono giorno per le nove, l'ottavo giorno per otto e così via alla prima della MA. Una volta che il totale è stato determinato, l'analista poi dividere il numero per l'aggiunta dei moltiplicatori. Se si aggiungono i moltiplicatori del 10-day MA esempio, il numero è 55. Questo indicatore è conosciuta come la media mobile linearmente ponderata. (Per la lettura correlata, controllare semplici medie mobili Fai Trends distinguersi.) Molti tecnici sono convinti sostenitori del esponenzialmente lisciato media mobile (EMA). Questo indicatore è stato spiegato in tanti modi diversi che confonde gli studenti e degli investitori. Forse la migliore spiegazione viene da John J. Murphys: Analisi tecnica dei mercati finanziari, (pubblicato dal New York Institute of Finance, 1999): Il modo esponenziale lisciato movimento indirizzi medi sia dei problemi connessi con la media mobile semplice. Innanzitutto, la media esponenziale livellata assegna un peso maggiore ai dati più recenti. Pertanto, è una media mobile ponderata. Ma mentre assegna minore importanza ai dati dei prezzi passati, esso include nel suo calcolo tutti i dati nella vita dello strumento. Inoltre, l'utente può regolare il coefficiente di dare maggiore o minore peso al più recente prezzo giorni, che viene aggiunta ad una percentuale del valore giorni precedente. La somma dei due valori percentuali aggiunge fino a 100. Per esempio, l'ultimo giorni prezzo potrebbe essere assegnato un peso di 10 (.10), che viene aggiunto al giorno precedente peso di 90 (.90). Questo dà l'ultimo giorno 10 del peso totale. Questo sarebbe l'equivalente di una media di 20 giorni, dando l'ultimo giorni prezzo un valore inferiore di 5 (.05). Figura 1: esponenziale Smoothed media mobile È possibile che questo grafico mostra il Nasdaq Composite Index dalla prima settimana di agosto 2000 al 1 ° giugno 2001. Come si può vedere chiaramente, l'EMA, che in questo caso utilizza i dati relativi ai prezzi di chiusura nel corso di un periodo di nove giorni, ha segnali di vendita precisi sul 8 settembre (contrassegnato da un nero freccia verso il basso). Questo era il giorno in cui l'indice rotto sotto il livello 4.000. La seconda freccia nera indica un'altra tappa verso il basso che i tecnici sono stati effettivamente aspettavano. Il Nasdaq non ha potuto generare abbastanza volume e interesse da parte degli investitori al dettaglio per rompere il marchio 3.000. E poi tuffò di nuovo a toccare il fondo a 1619,58 su aprile 4. La fase di rialzo del 12 aprile è contrassegnato da una freccia. Qui l'indice ha chiuso a 1,961.46, e tecnici ha cominciato a vedere i gestori di fondi istituzionali che iniziano a prendere alcuni affari come Cisco, Microsoft e alcuni dei problemi legati all'energia. (Leggi i nostri articoli correlati: Moving Buste media:. Raffinazione uno strumento popolare Trading e spostamento di rimbalzo media) mobile ponderata Metodi media di previsione: Pro e contro Ciao, amore tuo post. Si chiedeva se si potesse elaborare futher. Usiamo SAP. In esso vi è una selezione è possibile scegliere prima di eseguire la vostra previsione chiamata inizializzazione. Se si seleziona questa opzione si ottiene un risultato del tempo, se si esegue prevedere i di nuovo, nello stesso periodo, e non si seleziona inizializzazione il risultato cambia. Io non riesco a capire che cosa sta facendo l'inizializzazione. Voglio dire, mathmatically. Quale previsione risultato è migliore per salvare e utilizzare per esempio. I cambiamenti tra i due non sono nella quantità prevista, ma nel MAD e l'errore, le scorte di sicurezza e le quantità ROP. Non sono sicuro se si utilizza SAP. hi grazie per spiegare in modo effeciently suo troppo gd. grazie ancora Jaspreet Lascia un commento Cancella risposta Chi Shmula Pete abilla è il fondatore della Shmula e il carattere, Kanban Cody. Egli ha aiutato le aziende come Amazon, Zappos, eBay, Backcountry, e altri ridurre i costi e migliorare l'esperienza del cliente. Lo fa attraverso un metodo sistematico per identificare punti di dolore che incidono sui clienti e il business, e incoraggia un'ampia partecipazione dei soci dell'azienda per migliorare i propri processi. Questo sito è una raccolta delle sue esperienze che vuole condividere con voi. Inizia con download gratuiti
No comments:
Post a Comment